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Abstract

The memory performance of applications on existing architectures depends significantly on hardware
features like prefetching and caching that exploit the locality of the memory accesses. The principle of lo-
cality has guided the design of many key micro-architectural features, including cache hierarchies, TLBs,
and branch predictors. Quantitative measures of spatial and temporal locality have been useful for predict-
ing the performance of memory hierarchy components. Unfortunately, the concept of locality is constrained
to capturing memory access patterns characterized by proximity, while sophisticated memory systems are
capable of exploiting other predictable access patterns.

Here, we define the concepts of spatial and temporal regularity, and introduce a measure of spatial access
regularity to quantify some of this predictability in access patterns. We present an efficient online algorithm
to dynamically determine the spatial access regularity in an application’s memory references, and demon-
strate its use on a set of regular and irregular codes. We find that the use of our algorithm, with its associated
overhead of trace generation, slows typical applications by a factor of 50-200, which is at least an order
of magnitude better than traditional full trace generation approaches. Our approach can be applied to the
characterization of program access patterns and in the implementation of sophisticated, software-assisted
prefetching mechanisms, and its inherently parallel nature makes it well suited for use with multi-threaded
programs.

1 Introduction

Processor speeds are increasing much faster than memory speeds, and this disparity prevents many appli-
cations from making effective use of the tremendous computing power of modern microprocessors. Current
access times of 50 cycles or more often cause memory performance to dominate application run time, and
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the processor/memory performance gap continues to grow. Streamed computations with strided access pat-
terns are among those whose performance suffers most acutely. The vectors used in such applications lack
temporal and often spatial locality, and thus have poor cache behavior. Nonetheless, these access patterns
have the advantage of being predictable, and this predictability can be exploited to improve the efficiency of
the memory subsystem.

Attempts to mitigate the memory bottleneck range from hiding or reducing latency to increasing effective
memory bandwidth. Latency-hiding approaches like prefetching encompass a broad range of memory ac-
cess techniques involving software, hardware, or both. The purely software approach relies on a compiler to
generate instructions to preload data [26, 25], or an application writer to modify source code to achieve the
desired behavior [5, 28, 21]. Hybrid approaches include hardware support for prefetch operations, exposing
those mechanisms to software. For instance, they might augment the ISA with a prefetch instruction [12],
redefine a load to a specific register (e.g., to register 0, as in the PA-RISC architectures [20]), or provide
programmable prefetch engines [8] or programmable stream buffers [23]. Baer and Chen [2], Fu and Pa-
tel [14], and Sklenar [30] propose dynamic vector prefetch units that induce stream parameters at run time.
The cache-based sequential hardware prefetching of Dahlgren et al. [11] eliminates the need for detect-
ing strides dynamically. To minimize the number of unnecessary prefetches, the prefetch distance of these
run-time techniques is generally limited to a few loop iterations (or a few cache lines). Hardware-only
prefetching [2, 19, 11, 13, 30] has the advantage of being transparent, but because of its speculative nature,
care must be taken to keep from lowering application performance by increasing contention in the caches
and wasting bus bandwidth on useless prefetches.

Dynamic access optimization (DAO) techniques attempt to make better use of the memory system by
changing the order and/or apparent location of memory references. For instance, the Impulse memory sys-
tem can significantly improve the performance of applications with predictable access patterns but poor
spatial or temporal locality [7]. This approach reduces observed memory latency by improving processor
cache utilization and memory bus utilization, and it masks latency by prefetching data within the memory
controller. Other work to improve effective memory bandwidth has examined memory scheduling mecha-
nisms in the context of compiler-supplied or application-supplied information about access patterns, either
in uniprocessors [22, 35, 23] or vector machines [10].

Quantitative measures of of a program’s locality can help to predict application performance on architec-
tures that employ some of these techniques, and, more importantly, can be leveraged to guide the profitable
use of these mechanisms. Here we extend the principle of locality to the principle of regularity. Informally,
spatial regularity is the tendency of programs to continue patterns of previous accesses, and temporal regu-
larity is the tendency of programs to repeat previous sets of accesses. In the sections that follow, we define
a simple metric for quantifying spatial regularity, and we present an algorithm for dynamically detecting
the occurrence of streams. We then use this algorithm to compute our spatial regularity metric for a set of
benchmarks ranging from micro-benchmarks to an application representative of important codes in use at
Lawrence Livermore National Laboratory. Our approach can be applied to the characterization of program
access patterns and in the implementation of sophisticated, software-assisted prefetching mechanisms, and
its inherently parallel nature makes it well suited for use with multi-threaded programs.

2 The Principle of Regularity

The principle of locality is well known and recognized for its importance in determining application
performance. Traditionally, this principle is considered to have two primary components, and a classic
definition of these is found in Hennessy and Patterson’s computer architecture text [16]:

� Temporal locality (locality in time) — If an item is referenced, it will tend to be referenced again soon.
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� Spatial locality (locality in space) — If an item is referenced, nearby items will tend to be referenced
soon.

Performance gains from traditional caching and prefetching are a testimony to the fact that reference
locality exists in many applications, and locality measures [32, 15, 4, 34] can be helpful in predicting per-
formance improvements from any such technique that attempts to exploit locality. Unfortunately, these
concepts, and their measures, alone are insufficient to describe all the key application properties that intelli-
gent memory systems can exploit. Consider the following code fragment:

double A[5000][5000];
int j, k;
. . .
for (j=0; j<5000; j++)

for (k=0; k<5000; k++) /* columnar stride */
A[k][j] = A[k][j] * A[k][j]; /* square the element */

Assuming row-major layout, the columnar strides cause successive iterations of the inner loop to access
array elements that are widely spaced in memory. On traditional prefetching systems, few (if any) perfor-
mance gains can be expected through data prefetches when executing this fragment. The temporal locality
in the reference sequence will yield some benefit from caching, though. For such a case, locality measures
provide an accurate assessment of code speed-up (or lack thereof) as a result of caching and prefetching on
traditional controllers.

Note that in spite of the lack of spatial locality, a very regular pattern of data references exists here. This
pattern can be exploited by smarter memory subsystems that (possibly with the help of the compiler) detect
the stream, prefetch successive stream elements (either within the controller or into cache), and perhaps
gather them into dense cache blocks [2, 14, 30, 8, 23, 22, 35]. Locality metrics do not give an accurate
depiction of application performance in the presence of such memory subsystems.

In order to describe some of the additional program characteristics that these advanced memory sys-
tems attempt to exploit, we extend the principle of locality to the principle of regularity. As with locality,
regularity can be broken into two components:

� Temporal regularity (regularity in time) — If a set of items is referenced, it will tend to be referenced
again soon.

� Spatial regularity (regularity in space) — If a set of items referenced establishes a predictable pattern,
items that continue that pattern will tend to be referenced soon.

Temporal regularity simply extends temporal locality to sets of items, and it reduces to temporal locality
when the set consists of a single item. Spatial regularity extends spatial locality to patterns of accesses; our
intent is to capture the notion of streams of references in an issuing sequence such as strided array accesses.
Spatial regularity reduces to spatial locality when the pattern is quickly established and the stride is small.

Most computer architecture features that exploit regularity depend on the program’s exhibiting spatial
regularity. However, compiler-based approaches for exploiting temporal regularity have been identified [9],
and we expect that other, hardware-based techniques will emerge as the principle of regularity becomes
better understood. Nonetheless, we focus on spatial regularity for the remainder of this paper, since it is
more commonly exploited and is more tractable to measure.

3 A Spatial Regularity Metric

In order to measure spatial regularity, we must refine our concept of a pattern that a set of referenced items
can exhibit. First, we define a regular sequence as a sequence of locations (or numbers, more generally) in
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which there exists a functional relationship between constituting members. From a theoretical standpoint,
there are few restrictions on what the defining relationship may be. Practically, however, there is a limit on
the ability to identify complex streams (and on the complexity of a hardware mechanism to exploit such
streams). For our purposes, we will assume that only addresses in an arithmetic progression constitute a
regular sequence, as in ����� ��� ���	��
 , where 
 is a constant and ��� is the �� � reference in the regular
sequence. We choose this definition because of the widespread occurrence of such sequences in common
codes, as well as the acceptable complexity in identifying them. As an illustration, consider the following
series of numbers (or access addresses): 0 4 8 12 16 20. This constitutes a regular sequence with
stride four, length six and starting element 0. Hereafter, we will use the terms stream and regular sequence
interchangeably. The following metric can be used to quantify the spatial regularity of an application:

�������
�
� ��� �

����� � �
�

where
� � � � is the length of the  � � sequence and

�
is the total number of references. If we do not allow

a reference to be included in more than one sequence (i.e., we disallow multiple membership), the metric
is a positive number not greater than unity. Higher metric values imply greater spatial regularity, and our
example code segment above exhibits high regularity: each memory reference in the code segment belongs
to a stream, and consequently the metric for the code is exactly one. In addition to the above metric, statistics
such as the mean length of sequences or variance in sequence lengths can be used to obtain a more accurate
picture of an application’s regularity.

4 An Online Algorithm to Measure Spatial Regularity

One approach to determining spatial regularity performs static analysis of the code to recognize sections
that access elements in a stream, as in loop nests that iterate through an array. Code can be inserted to
record actual stream lengths at run time, as in the WM compiler [3], and to compute the regularity metric
dynamically. Another approach instruments the code at compile time to record details of actual loads and
stores at run time, inserting a call to a subroutine before every memory reference and passing the referenced
address and the type of access (read or write) as parameters. The subroutine can choose to process the data
online or to archive it for later processing. Large amounts of trace data make the option of archiving traces
unacceptable for all but very small program runs.

Note that these two methods may compute different regularity values for the same program because of
the different information available at compile time versus run time:

� Static approaches do not have the benefit of information such as de-referenced addresses of pointers,
since these can only be available at runtime.

� Static approaches are generally constrained to detecting regularity within a basic block, rather than
across multiple blocks.

� The practical limitations on algorithms that use trace data for stream detection render it difficult to
detect streams for which successive elements do not fall within a fixed size window of subsequent
references. Any dynamic, online algorithm for stream detection from traces must employ such a
window, and we expect off-line algorithms (if they run in reasonable time) to have a similar limitation.
Static approaches have no such restriction.

Our approach to measuring spatial regularity hinges on an efficient online algorithm — both in terms of
space and time complexity — to detect streams by analyzing the trace data of a program’s loads and stores.
Our dynamic stream-detection algorithm assumes that streams are comprised solely of regular sequences.
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In order for our algorithm to be useful in analyzing real programs, we must allow streams to be interleaved
with each other and with non-stream references. For example, consider:

sum = 0;
for (i=0; i< MAX_ELEMS; i++)
sum += A[i];

If we assume sum does not reside in a register, then the accesses to A, which form a stream, will be
interleaved with references to sum. We would like our algorithm to detect the stream corresponding to A
even in the presence of the alternating accesses to sum. In other words, in the access sequence a b c d
p z e f, we would like to identify the regular sequence a b c d e f, despite the noise of p z. Con-
straints on space require us to periodically discard older trace data to make room for newer references. This
aging prevents the detection of streams interspersed with a large number of intervening accesses. Taking
advantage of the regularity in such largely spaced streams (i.e., with little locality) is likely to be much more
difficult, and so we find this restriction to be reasonable for our purposes.

WHILE new reference exists DO
Increment column; /* move window */
/* Add reference to pool */
pool[0][column] := new reference;
IF reference extends stream IN stream table THEN
Update length of stream in stream table;
Mark column in pool (shaded in example);

ELSE
/* Compute and store differences in pool */
FOR i := 1 TO window size DO
pool[i][column] := pool[0][column] - pool[0][column-

i];
END FOR;
found := FALSE;
/* Search for streams of minimum length 3 */
FOR i := 1 TO window size DO
FOR k := 1 TO window size DO
IF pool[i][column] == pool[k][column-i] THEN
found = TRUE;

END IF;
UNTIL found;

UNTIL found;
IF found THEN

Enter stream in stream table;
Mark corresponding columns in pool (shaded in example);

END IF;
END IF;

END WHILE;

Figure 1. Online Algorithm to Detect Streams

The algorithm requires maintaining two data structures:

5



� Stream Table: This contains a compact description of streams that have already been detected. The
table is stored as a chained hash, with the expected successor to the stream serving as the hash key.
Each node in the table is a triple consisting of the start address, length, and stride of the
stream. If aging of stream elements is desired, an additional value representing the age of the last
stream element can be added to the record. An additional field may also be needed in the record
to implement chaining in the hash table. Since these are specific to the implementation, and not
germane to the working of the algorithm, we assume that the record consists of only the three elements
described above.

� Pool: This contains the unaged references that have not yet been detected to be part of a stream.
These references form the window of addresses scanned for potential streams. As new addresses are
referenced, the window of active addresses expands to fill the storage structure of the pool. Once
filled, the addition of each new reference causes an earlier reference to be discarded after a search for
streams. This process of addition and removal from the pool can be viewed as the cyclical rotation
of the active window through the pool’s storage structure. In determining the existence of streams,
elements of which may be separated by arbitrary numbers of intervening accesses, it is necessary
to compute differences between elements of the pool. To reduce the computational complexity in
repeatedly determining the differences between existing elements as new elements are added, we
store a set of differences with each reference. Given this pool structure, detecting streams becomes
a matter of finding a sequence of elements such that the differences between successive elements
match. In our implementation, the pool is organized as a statically allocated, two-dimensional array
along with two indices, the start and the end of the active addresses. The indices advance via modulo
arithmetic through the pool.

100 211 100 100 212 100 100 213

111 −111

0

0

−111

0 1 1

1

−−

−−

−−

−−

−−

−−

−1

−2

−3

−4

−5

−6

dist.

Figure 2. Snapshot of the Reservation Pool

Multi-threaded programs can easily employ our stream detection algorithm. A unique thread running
this algorithm (and maintaining its own stream table and pool) can be dedicated to receiving the accesses
of a corresponding thread in the instrumented application. At the conclusion of stream detection of all
threads, the data can be collected to compute the regularity metric and other statistics on a per-thread basis
or for the application as a whole. By maintaining separate data structures in each thread, the detection of
streams across application threads is not possible, but we believe this is desirable. By maintaining separate
stream tables, implementations could also distinguish between loads and stores, since these are often handled
differently in modern architectures. An ancillary benefit of this stream detection process is that it can
be leveraged to quantify temporal locality, which corresponds to streams with zero stride, and temporal
regularity, which depends on the extent of stream repetition. The algorithm, omitting the details of aging
and the distinguishing between access types, is presented in Figure 1. We illustrate the application of our
algorithm on the following highly regular sequence of accesses, where we have omitted all intervening
accesses for simplicity:

100, 211, 100; 100, 212, 100; 100, 213, 100; 100, 214, 100; �����
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The pool can be viewed as a table as shown in Figure 2, which depicts a snapshot of the pool after en-
countering the first eight references. The header row shows the referenced locations. Each column contains
the difference between the value in the current column header and the value in a preceeding column (see
“compute and store differences” in Figure 1). The particular element used for calculating the difference
depends on the row for which the difference is to be computed. The first row (below the header) consists of
the difference between an element and its immediate predecessor (distance � � ), exemplified by the upper
arrow. The second row consists of differences between an element and its penultimate predecessor (distance��� ).

To capture streams within a window size � , we need only compute the differences above the diagonal of
the pool table. Elements determined to be part of a stride are removed from the table. In the example above,
on seeing the third 100 (assuming a minimum length of three), we identify a stream by observing the two
corresponding differences of 0 (circled) in a transitive relationship. Consequently, we insert a stream of
<100,3,0> in the stream table. These elements are shown shaded in the pool to illustrate their absence
from the subsequent difference computations. Similarly, the later 100s are immediately observed to belong
to the stream, and the stream fields are modified to <100,5,0> on receiving the fifth 100. To preserve
the notion of window size, we still keep a slot for an element detected to be a part of a stream, but we omit
differences for that element. On seeing 213, a new stream is identified by observing an identical difference
of 1 (circled) for the transitive relation between 211, 212 and 213. At this point, <211,3,1> is inserted in
the stream table, and the slots for these elements can be marked to indicate their non-participation in further
stream detection.

Although not explicitly shown in the outline of the algorithm, we implicitly assume that sequences must
have a minimum length to qualify as streams. The value of metrics computed on streams is dependent on
this parameter. The worst case complexity of the algorithm is ��� �	� � ��


, where
�

is the number of total
reference and � is the window size. This can be reduced further if differences with aged elements are not
computed. Our algorithm intentionally prevents membership of an element in multiple streams. We enforce
this by removing elements from the pool on detecting their membership in a stream.

5 Implementation and Results

We have implemented our algorithm for both Linux-x86 and Solaris-x86 platforms. The Portland Group,
Inc., C and Fortran compilers [29] were used to instrument our benchmarks such that all loads and stores
to memory are preceeded by a call to a special subroutine to which the referenced address and access
type (load/store) are passed as arguments. The subroutine forwards this information to a separate process
that implements our stream detection algorithm. Unix FIFOs were used for inter-process communication,
although other mechanisms such as shared memory could also be used. Employing a separate process for
stream detection decouples the instrumented application from the detection process as much as possible.
Our implementation of the stream detection algorithm is itself multi-threaded, and handles multi-threaded
applications with ease: we merely devote a separate thread in the detection process to each application
thread, and each detection thread maintains separate data structures. Stream aging is optional, and we do
not currently differentiate between loads and stores in determining stream membership. This simplified the
analysis of initial results, but distinguishing among different access types can be easily implemented by
maintaining separate data structures.

We ran our stream detection algorithm on a variety of regular and irregular codes, on both, an AMD-
K6 machine running Linux, and the SRC-6 [31], which is an SMP x86 system running Solaris. For our
initial experiments, we compiled the benchmarks with global and loop optimizations disabled. Application
run-times increased between one and two orders of magnitude, depending on the extent of memory activity
versus computation. We found that to reduce noise in the detected streams, the minimum length qualifying
a series of accesses to be a stream should be set higher than three. Setting the pool width too low can also
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significantly affect which streams are detected and at which lengths. For instance, when the pool width is
close to the minimum stream length, many streams obviously remain undetected. For most of our tests,
we found a minimum stream length of five and a pool width of 60 to work well. We also found that aging
of streams significantly affects the streams detected and their observed lengths. For all the initial results
presented here, stream aging was disabled. Nonetheless, the definition of the regularity metric makes it
relatively insensitive to changes in detected streams lengths, since the total number of regular references
rarely changes dramatically — only the stream membership changes.

Table 1 lists the results obtained by applying the algorithm to single-threaded versions of representative
codes. Two of our tests — daxpy and matmult — were parameterized: daxpy was executed with vector sizes
of
��� ��� , and matmult performed multiplication on

������� �����
matrices. For the obviously regular daxpy and

matrix multiplication, a high value of regularity ( �
�
�	��
 ) was observed, with the expected streams being de-

tected. The mean stream lengths for these two are high — another indicator of regularity. The large standard
deviation in stream lengths for matmult results from a disparity in the stream lengths: loop variables con-
tributed extremely long zero-stride streams, while the array accesses contributed far shorter streams. This
is also reflected in the lower mean and standard deviation, when we exclude zero-stride streams. Irregular
codes like UMT981 — which has a substantial use of indirection vectors and is a fairly accurate representa-
tion of some of the scientific codes used at LLNL 2 in terms of its use of memory — exhibited a far lower
regularity metric. The lower mean stream lengths also corroborates the lack of regularity. We ran our algo-
rithm on multi threaded versions of daxpy, UMT98 and matmult, with four threads. Since the parallelization
of daxpy was simply a work-sharing OpenMP directive which divided the loop equally among four threads,
identical results for all threads were obtained for it. Table 2 lists the results for these runs.

Program Regularity Mean Stream Length Std. Dev. Stream Length Slow-down
inc. 0-stride ex. 0-stride inc. 0-stride ex. 0-stride inc. 0-stride ex. 0-stride

umt98 0.65 0.35 64 19 682 272 73
matmult 1.00 1.00 600 198 1006 69 115
daxpy 1.00 1.00 10240 7680 58 51 37
bc 0.97 0.42 311 17 221 4 82
ks 0.48 0.34 17 9 264 2 210
anagram 0.94 0.67 178 22 484 42 47

Table 1. Regularity for single-threaded programs

Program Thread Num. Regularity Mean Stream Length Std. Dev. Stream Length
inc. 0-stride ex. 0-stride inc. 0-stride ex. 0-stride inc. 0-stride ex. 0-stride

umt98 0 0.71 0.41 74 22 540.2 378.6
1 0.59 0.29 45 13 352.9 57.2
2 0.59 0.29 45 13 353.3 57.1
3 0.59 0.29 45 13 353.1 57.2

matmult 0 1.00 1.00 399 132 475.9 11.5
1 1.00 0.99 315 103 480.4 9.9
2 1.00 0.99 320 105 507.0 9.9
3 1.00 1.00 352 116 512.6 10.4

daxpy 0 1.00 1.00 2926 1920 30.2 25.2
1 1.00 1.00 2926 1920 30.2 25.2
2 1.00 1.00 2926 1920 30.2 25.2
3 1.00 1.00 2926 1920 30.2 25.2

Table 2. Stream detection in multi threaded programs – 4 threads

1Unstructured Mesh Transport code
2Lawrence Livermore National Laboratory
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6 Related Work

Traditional measures of locality include aggregate statistics such as cache hit rates, but these provide little
insight as to why a program’s access patterns generate the resulting cache behavior. Other measures break
down summary performance data spatially or according to memory bandwidth requirements. For instance,
Tyson et al. perform a detailed characterization of cache behavior for individual load instructions [33], and
Abraham et al. study the predictability of memory referencing latencies for individual instructions [1]. Both
studies confirm that a small number of loads account for a majority of data cache misses, and Thiebaut’s
application of fractal models to memory behavior illustrates that cache misses are bursty in nature [32].
Johnson et al. measure spatial reuse fractions for cache lines, finding that fetching data with a uniform,
large cache block size usually wastes cache space and bus bandwidth [18]. Huang and Shen measure the
bandwidth requirements of programs as a function of available local memory [17]. Burger et al. calculate
traffic ratios, traffic inefficiencies, and effective pin bandwidths for different levels of the memory hier-
archy [6]. McKinley and Temam take a step towards more detailed analysis by quantifying the locality
characteristics of numerical loop nests [24].

Newer approaches to characterizing program locality make it easier to represent and discuss caching lo-
cality and behavior in concrete terms. Brehob and Enbody propose a mathematical model of locality that
uses the distance between references in a trace to calculate a measure of temporal locality, and a correspon-
dence to cache lines to represent spatial locality [4]. Grimsrud et al. introduce a method of quantifying the
locality in a trace and visually representing it as a 3D surface [15]. They explore some of the properties
of this formulation, showing the correlation between graphical features and specific reference patterns, and
demonstrating the utility of their locality measure through two applications as a visualization tool: charac-
terizing and summarizing workload locality, and evaluating benchmark effectiveness for exercising memory
hierarchies. In contrast to these largely ad hoc approaches, Weikle develops an analysis methodology to
provide theoretical foundations to support memory hierarchy design, and builds some of the mathematical
and software tools to support this methodology [34]. Her framework yields greater insight into why memory
hierarchies behave as they do for particular reference patterns, but the tools to fully automate the approach
are not yet in place.

Chilimbi attempts to address the processor-memory performance gap by introducing the abstraction of
exploitable locality — a combination of locality and regularity [9]. His definitions of regularity, both spa-
tial and temporal, are sufficiently different from ours to merit special attention. His definition of regularity
corresponds to our notion of temporal regularity, while his definition of temporal regularity has no coun-
terpart in our work. Furthermore, his usage of “spatial regularity” differs significantly; we use it denote
a property of programs, whereas he uses it to quantify a particular property of streams. Chilimbi focuses
on non-scientific codes with references to scalar variables while we address non-scalar references with ac-
cess patterns of varying regularity. While the specific development of regularity differs between his work
and ours, the underlying theme is the same: the memory performance of applications can be improved by
exploiting the presence of patterns in the memory references of an application.

7 Conclusions and Future Work

In an effort to better characterize application memory performance on modern architectures, we have
defined a regularity metric to quantify the predictability of a program’s reference patterns. To that end,
we have extended the concept of program locality by formally defining the twin concepts of spatial and
temporal regularity, and we have developed a metric to quantify the former. Calculating the metric for a
particular program requires the detection of regular address sequences, or streams. In this paper, we restrict
streams to be comprised of evenly spaced references, but more complex formulations are possible [27], and
investigating them is part of future work. We have outlined an efficient, parallelizable algorithm to detect
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such streams dynamically, and one of the advantages of this online approach is the absence of a need for
storing extremely large traces. The results for our implementation are promising, with increases in run-times
between and 50 and 200. As expected, our metric reflects the high predictability of the accesses in the daxpy
and matmult kernel, and indicates the lack of predictability in pointer benchmarks and irregular scientific
computations. Our current work investigates the use of dynamic instrumentation [27] to selectively apply
our approach to running programs, and the design of efficient memory system mechanisms to exploit the
program regularity revealed by our metric.
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